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ABSTRACT
Schools across the United States suffer from low on-time
graduation rates. Targeted interventions help at-risk stu-
dents meet graduation requirements in a timely manner, but
identifying these students takes time and practice, as warn-
ing signs are often context-specific and reflected in a combi-
nation of attendance, social, and academic signals scattered
across data sources. Extremely high caseloads for counselors
compound the problem. At Infinite Campus, a large student
information system provider, we modeled statistical rela-
tionships between student educational records and enroll-
ment outcomes, using de-identified records and in-system
analysis to guarantee student data privacy. The resulting
risk scores are highly predictive, context-sensitive, nation-
ally available, integrated into the existing student informa-
tion system, and updated daily.

1. INTRODUCTION
Approximately 15% of American students do not graduate
high school on time [16]. States and districts frequently
employ interventions designed to improve educational out-
comes, including reducing dropout rates. A key role of
school counselors is to direct the application of these inter-
ventions to the students who need them most. Counselors
first need to identify these students but are faced with infor-
mation overload. Each student’s data is distributed across
a student information system (SIS) and often other systems
or people, making it difficult to synthesize into an accurate,
comprehensive portrait of a student’s risk. Compounding
the problem are extremely large counselor caseloads—the
national average is 430 students per counselor—with higher
numbers typical in schools serving children with other struc-
tural disadvantages [11].

Early warning systems function as“automated attention”for
overworked counselors by automatically identifying students
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who might benefit from additional institutional resources.
They automate the more tedious data analysis and summa-
rization tasks so that counselors can focus on what humans
do best: building relationships.

1.1 Alternate approaches
An effective dropout prevention system requires developing
people, processes, and technology [7], identifying valid pre-
dictors, managing data and reports, assigning interventions,
and monitoring student progress [10, 15]. In this paper, we
focus just on the technology that identifies risk factors and
estimates student dropout risk, which can then be embedded
in a larger dropout prevention system.

Quantitative and qualitative determination of school dropout
risk factors is a decades-old area of research [19], though
the mid-2000s were a particularly important inflection point.
High-profile studies of dropouts in the Chicago [3] and Philadel-
phia [17] urban districts led to the development of statisti-
cal methods for determining risk factors and their incor-
poration into early warning systems. Several organizations,
often working together, have been instrumental in encourag-
ing American schools to adopt research-based best practices
[10], including the U.S. Department of Education’s Regional
Education Laboratories [18], the Consortium on School Re-
search [2] and NORC [7] at the University of Chicago, the
American Institutes for Research [8], and the Everyone Grad-
uates Center at Johns Hopkins University [9]. Most states
now make an early warning system available to their school
districts [6].

Until the mid-2010s, all widely-used dropout early warning
systems used threshold-based models, characterized by a few
easily comprehensible predictors with associated risk thresh-
olds (e.g., failing at least one course or being absent at least
20 days). The simplicity and auditability of these models,
and the associated ease of implementation using common
software and spreadsheet skills, is their key advantage over
machine-learned systems. Students are measured on each
predictor and flagged as “on-track” or “off-track” based on
which side of a preset threshold their data point falls. Staff
can intervene with students who have the most “off-track”
risk flags, or whose risk areas correlate with particular in-
tervention domains. A particularly influential approach is
Balfanz’s “ABC” taxonomy, in which students are measured
on attendance, behavior, and course performance metrics
[4], optionally with different thresholds for different student
subpopulations [12]. While some educational institutions
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implemented an ABC-style system themselves [10], others
used spreadsheets or data tools made available by organi-
zations like American Institutes for Research [8]. An active
area of research involves determining which predictors and
thresholds are appropriate for each school, or whether single
thresholds are appropriate at all.

To overcome the limitations inherent in threshold-based sys-
tems, we and other organizations created machine-learned
dropout risk identification systems in the mid-2010s. A
number of researchers describe their systems in the aca-
demic literature (e.g., [1]) or industry white papers (e.g.,
[20]). Several organizations serve machine-learned dropout
predictions at the scale of hundreds of thousands of students
in many school districts. The Wisconsin Department of Pub-
lic Instruction’s Dropout Early Warning System uses data
reported to the state every few months by the districts’ SISs
to build machine-learned models. The system produces two
predictions per year and is available for students in grades
6–9 [14]. Mazin Education (through BrightBytes) and Hoo-
nuit both sell machine-learned early warning and interven-
tion monitoring systems for all grade levels.

Machine-learned systems have two major advantages over
threshold-based models. First, the additional model com-
plexity affords more accurate predictions and allows system
designers to infer which risk factors are predictive in the
presence of other factors or for different populations. Sec-
ond, the variety of model architectures allows for more than
just inferring overall risk. Designers can choose, for instance,
to model time until dropout so that staff can intervene ac-
cording to acuteness of risk, or to model uncertainty.

1.2 Our contribution
Two key obstacles prevent machine-learned early warning
systems from being deployed nationwide. First, the pre-
dictive quality of these models is chiefly a function of data
availability, as models must be trained on a large dataset—
including a variety of educational contexts and outcomes—
to ensure they perform well for students they haven’t seen
before. Models built on a single district’s or even state’s
data may not generalize well to other populations. How-
ever, building a model on multiple states’ data requires the
data to be standardized, and without a common SIS to en-
force uniformity, manipulating data into a common format
is costly and time consuming.

Second, predictions must be surfaced to educators in a fre-
quent and easy-to-use manner, which means the most suc-
cessful systems will be closest to existing daily workflows. In
some existing systems, staff members must log into a sepa-
rate software program to access risk scores. In others, there
are months between score updates. Timely prediction is im-
portant; the sooner a school is aware of a student at risk,
the more time it has to intervene.

Infinite Campus provides a large student information system
and has made significant investment in education data local-
ization and standardization, reporting and warehousing, and
user workflows for American K–12 education. Our role in
the industry positions us to address the key remaining gaps
in early warning systems using centralized data warehouses,
standardized data, and placement of the early warning ap-

plication into the existing SIS.

Contributions
Available nationally in 32 states yet contextual to each
child’s educational environment
Useful predictions: highly predictive, daily updates,
four risk category scores, with consistent of predictive
quality between protected student groups
Integrated into the student information system with no
imports, exports or synchronization necessary

In the following section we describe our implementation of
a dropout early warning system on more than 6 million
student-years of educational records across 32 states. Our
overall dropout risk score has excellent predictive quality
with an AUC of 0.941 (see table 1 for additional quality met-
rics), and includes additional machine-learned scores that
help counselors understand the source of a student’s risk to
guide which interventions may be appropriate. Risk scores,
delivered automatically and updated daily, are integrated
into our existing SIS and available to counselors as an en-
hancement to their existing workflows.

2. IMPLEMENTATION

System design. Student data is stored in a number of rela-
tional SQL Server databases for school staff to create, read,
update, and delete educational records. These databases ex-
ist in Infinite Campus’s fully owned and operated Tier 4 data
centers that fulfill security requirements of the U.S. Depart-
ment of the Interior. Student records exist in a variety of
data structures and are recorded with varied time granular-
ity for 45 states and the U.S. federal government, a portion of
which we use for early warning. Because our model architec-
ture requires a common data structure, we aggregate student
records into a fixed format with one row per student-year,
where ‘year’ corresponds to an academic year. Aggregated
data is periodically transferred to a central repository in the
same data center. Data for past students whose educational
outcomes are known (e.g., graduation or dropout) is then
used to build a machine-learned model relating summarized
educational records to student enrollment outcomes. The
model, along with summarized properties of each district,
school, and geographic area present in the dataset, is de-
ployed behind an API. Each day, records for currently en-
rolled students are aggregated, de-identified, and sent to the
API, which returns risk scores for each student. Figure 1
illustrates this architecture. The returned risk scores and
a score history is made available to counselors via the SIS
user interface. By integrating and automating the process
of generating and updating risk scores into the SIS, we re-
lieve dropout prevention teams from the burden of collect-
ing, storing, and analyzing the source data themselves.

What we predict. Each student-year of aggregated educa-
tional records is tagged with one of three labels: “needs early
warning”, “does not need early warning”, or “ignore for early
warning”. A student-year is labeled with “needs early warn-
ing” if the student’s records include known undesirable out-
comes during the year in question or future years. For ex-
ample, records for an 8th grader in 2014 would be labeled
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Figure 1: Schematic of architecture describing data flow for model training and prediction. Model train-
ing is performed infrequently, while risk scores are recalculated daily to incorporate new information. All
data remains in the Infinite Campus data center and is not transferred to third-party servers. Identifying
information is removed before transfer between systems.

“needs early warning” if they dropped out in 2016. We define
undesirable outcomes based on enrollment end status codes
identified by states as indicating school dropout, and expand
the definition to include unsatisfactory academic progress
(i.e., retention or demotion) and expulsion or other removal.
A student-year is labeled with “does not need early warning”
if the student had no undesirable enrollment outcomes dur-
ing the year in question or future years, and we can confirm
that the student persisted to graduation. If we do not know
whether the student persisted to graduation—the student
transferred outside of our system or is still enrolled—then
the student’s data is censored and we lack ground truth la-
bels for it. Each of these students’ years are labeled with“ig-
nore for early warning” and excluded from training and eval-
uation. To translate state-specific enrollment status codes
to outcome categories, codes were mapped by three indepen-
dent raters, then differences were reconciled and validated
by comparing resulting outcome rates across districts. Data
from a school district are removed from training if that dis-
trict has abnormally high “needs early warning” or “ignore
for early warning”rates, as these conditions may indicate un-
derlying inconsistencies in record-keeping that warrant fur-
ther investigation. In addition, student-years are removed
from training if the student’s cohort is not scheduled to have
graduated yet, in order to remove label bias in earlier grades.

Our data collection and labeling process produces approxi-
mately 6.4 million rows of labeled data. We use 45% of rows
for model training, 5% for model validation (to determine
training stopping points), and 50% for final quality evalu-
ation, split by student. Roughly 16% of training rows are
labeled as “needs early warning”.

Predictors. Our training set is produced by collecting and
summarizing educational information from the core SIS data-
base. This summarized information relates to attendance,
academic performance, behavior, household and enrollment

stability, and other items. We chose predictors that are con-
sistent across states and districts and that are supported by
the dropout prevention literature (e.g., [19]). Where data
is localized, we employ experts who communicate directly
with stakeholders in districts and states to ensure we under-
stand the unique characteristics of local use and law. At-
tendance information includes the proportion of class time
a student was actually present, as well as absences grouped
by type of excuse. Academic performance information in-
cludes the proportion of course grades attributed to each
letter grade, overall high school GPA, and the proportion of
attempted credits successfully earned. Behavior information
includes the number of behavior infractions and resolutions,
as well as whether weapons, drugs, or harassment were in-
volved. Household and enrollment stability information in-
cludes the presence of past undesirable enrollment outcomes
and how often the student changes home addresses, schools,
or districts in the middle of school years. Finally, we include
contextual information such as age and grade level. In to-
tal, we have approximately 70 distinct predictors per year,
and each student-year row includes the current and previous
year’s data.

One core design goal for our system was to have a nation-
wide statistical model that is sensitive to local and contex-
tual factors. We achieved context-specific performance with
two types of feature engineering: including subpopulation
aggregation features and calculating interactions among a
student’s personal features as well as the subpopulation ag-
gregates that apply to them. For example, a student’s at-
tendance or academic data relative to their peers in a given
group may carry information about risk. To allow for this
possibility, we calculated two types of summary statistics
for each school, district, and ZIP code in our dataset. For
numeric predictors, we calculated the mean value per group.
For categorical predictors, we calculated the proportion-per-
group of each category. These group-level contextual fea-
tures allow us to capture signals about students’ environ-
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ments that are more informative than simple group-membership
variables. The group-level information about each student-
year’s specific district, school, and ZIP code is joined on each
student-year row for model building and prediction.

By including a wide range of features characterizing individ-
ual students and their educational environments, we allow
the machine learning model to determine the significance of
each feature and the relationship between features as they
relate to risk. The wide range of potentially predictive fea-
tures is simply not available to most non-SIS vendors. By
using a relatively complex feature set and modeling architec-
ture, we are able to capture complex contextual relationships
between students and their environments.

Explanatory scores. While machine learning affords high
predictive accuracy and the ability to capture complex re-
lationships between predictive features, this comes at the
cost of reduced model interpretability. In early conversa-
tions with customers, we were frequently asked why a stu-
dent received a given risk score. To answer this question, we
supplement our overall risk score with two types of explana-
tory ‘category’ scores that provide insight into which parts
of a student’s record are contributing to their overall risk.

The first set of explanatory scores is based on Balfanz’s
“ABC” categories [10]—attendance, behavior, and course
performance—and an additional “stability” score including
measures of household and enrollment stability. Each of the
four scores is produced by a separate model trained only
on predictors from its respective category. By partitioning
the predictors according to category, we in turn are able
to disentangle the impact each category has on the over-
all risk score. The predictive quality of category scores is
necessarily lower than the overall risk score, because the
category-specific models use a strict subset of the overall
model’s predictors. However, these scores indicate whether
each category of a student’s predictors, when taken by it-
self, is characteristic of a student with undesirable future
enrollment outcomes.

In addition to scores built on subsets of predictors from
each category, we also build scores for each category using a
“counterfactual”approach. That is, if a student’s records im-
proved in a certain area (but the rest of the student’s records
stay the same), how would their risk change? To answer this
question, we replace the values for the “actionable” predic-
tors in a category with values corresponding to exemplary
performance. The resulting data represents an attainable
ideal for each student—if he or she attended every class,
earned perfect scores on every assignment, or never behaved
inappropriately. This data is used to produce a counterfac-
tual risk score for each of the four categories, which when
subtracted from the student’s actual overall risk score indi-
cates the potential“room for improvement” in each category;
these are our final four explanatory scores.

While picking values corresponding to exemplary perfor-
mance appears intuitive (e.g., 4.0 GPA, 100% attendance),
using them to artificially modify student data has the po-
tential to push the resulting data points outside the space
of training examples, leading to unpredictable model behav-

ior. Preliminary analysis found this to be a problem for some
“obvious” exemplary values, leading us to select values ex-
perimentally instead. For each feature, we used a statistical
model to find the optimal bin (range of values) correspond-
ing to the lowest predicted risk, which we subsequently val-
idated by checking that the proportion of actual dropouts
was lowest for this bin. We chose a reasonable value from
each optimal bin to represent exemplary performance.

2.1 Modeling technique
The system described here must operate at scale within an
industry setting and be robust to messy and missing data.
To achieve this, we use the xgboost package [5] for model-
ing, which constructs a series of simple decision trees. Unlike
logistic regression or neural networks, xgboost is robust to
the presence of outliers and appropriately handles missing
values. The decision-tree structure of model components
provides an integrated way to capture contextual relation-
ships between individual predictors and group-level aggre-
gates. xgboost supports parallelization of model training,
so training scales well on enterprise server hardware. We use
the ‘binary:logistic’ training objective, so that xgboost mod-
els produce the probability of a student-year being labeled
as “needs early warning”. We use the area under the receiver
operating characteristic curve (AUC) as the xgboost evalu-
ation metric. AUC measures the quality of sorting produced
by the model, with a high value for AUC indicating that the
model is correctly assigning higher probabilities to student-
years labeled as “needs early warning” than to those labeled
as “does not need early warning”.

Our modeling strategy ensures robustness to noise in two
ways. First, we heavily regularize our xgboost models by
using a small tree depth and relatively few training rounds,
reducing over-fitting and making the model more robust to
small changes in student data (both during training and dur-
ing prediction). Regularization makes it possible to provide
high-quality predictions for unseen data, such as a student
in the evaluation dataset or a new customer whose data was
not included in model training. Second, for each score type
we train an ensemble of 11 to 25 xgboost models, and use
the median prediction of all models. This technique further
reduces variability between model deployments.

Predictions. Predictions are refreshed daily by aggregating
educational records of currently enrolled students and send-
ing those aggregates to our API, as illustrated in Figure 1,
which provides GRAD scores and category scores back to
the SIS. This technique allows us to provide score updates
more frequently than competitors, and eliminates the re-
quirement for school districts to transfer or analyze data on
their own. The SIS then displays risk scores to staff mem-
bers that have been given access to the early warning tool
by district administrators.

As described above, we train the model using aggregations
from past entire student-years. However, daily predictions
are made for currently enrolled students, whose current year
records contain only a partial year of data. We used sev-
eral methods to mitigate the mismatch with our training
dataset. First, in addition to aggregates summarizing a
student’s data from the current academic year, we also in-
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clude aggregates from the student’s previous year as predic-
tors. This allows the model to observe student data for an
already-completed year and it affords analysis of year-over-
year changes. Second, some data is in the form of event
counts that accumulate throughout the year, such as the
number of missed periods or the number of behavior resolu-
tions. This data is converted into a rate, such as missed peri-
ods per instructional day. Rates are then directly compara-
ble at all points in the academic year. Since rate-converted
values are sensitive to small changes at the beginning of the
school year, we instead use an ‘estimated rate’ calculated as
a weighted combination of the previous and current year’s
rates. After about four weeks of school, the previous and
current year’s rates are equally weighted, with the current
year’s rate weighted more heavily after each additional day.

We convert the probability output from xgboost into a user-
facing “GRAD score” that ranges from 50 to 150, where 50
indicates high likelihood of undesirable enrollment outcomes
in the future and 150 indicates high likelihood of persistence
to graduation. We also considered that counselors may have
a greater need to distinguish between students with low and
moderate risk rather than between students with high and
very high risk. That is, a 0.1 change in dropout probability
from 0.05 to 0.15 is more important than a change in prob-
ability from 0.75 to 0.85. We therefore transform the raw
probabilities to ‘spread apart’ students at the low end of the
probability range (low risk), while compressing probabilities
at the high end of the range (high risk).

2.2 Model evaluation
We evaluated our overall and subscore models on an evalua-
tion set containing approximately 3.2M student-years (50%
of the total dataset) that were not used for model building or
validation during training. Results are listed in Table 1 and
represent, as far as we are aware, the highest predictive qual-
ity in the industry. In Table 2, we also list evaluation results
for our overall model by protected subpopulation [13]: sex,
race/ethnicity, grade level, and free/reduced meal eligibility
(a proxy for socioeconomic status).

Because counselors do not see predicted probabilities, but
rather ordered GRAD scores, we chose the area under the
receiver operating characteristic curve (AUC) metric that
measures whether students’ predictions are ordered in terms
of actual risk. The AUC effective range is 0.0 (perfectly
inversely sorted) to 1.0 (perfectly sorted), with 0.5 indicating
random predictions.

Futhermore, because counselors will give additional insti-
tutional resources to the few percent of students predicted
most at-risk, we chose precision and recall metrics that mea-
sure whether how well that most at-risk prediction category
actually contains at-risk students. We evaluated precision at
10% (P@10) and recall at 10% (R@10) following the litera-
ture [1]. A key limitation of precision@k and recall@k occurs
when k is less than the population’s condition-positive rate,
and therefore the effective range of those metrics is less than
1.0. To correct for this limitation, we also measured preci-
sion=recall at 16% (PR@16) because the condition-positive
(“needs early warning”) rate of the training set is 0.158. For
subpopulation evaluation, precision and recall at baseline
(PR@b) is based on that subpopulation’s own condition-

Model AUC P@10 R@10 PR@16
GRAD Score 0.941 0.865 0.549 0.719
Academics 0.914 0.825 0.524 0.682
Attendance 0.852 0.648 0.411 0.547
Behavior 0.808 0.582 0.368 0.493
Stability 0.860 0.654 0.415 0.548

Table 1: Risk score quality evaluation

Subpopulation + rate AUC P@10 R@10 PR@b
Female 0.130 0.935 0.770 0.597 0.683
Male 0.185 0.941 0.921 0.498 0.742
Hispanic 0.207 0.925 0.923 0.449 0.725
Asian 0.065 0.927 0.470* 0.712* 0.620
AIAN 0.275 0.927 0.972 0.354 0.771
NHPI 0.096 0.935 0.605* 0.676* 0.641
2+ races 0.185 0.935 0.909 0.487 0.717
White 0.134 0.937 0.790 0.592 0.692
Black 0.268 0.940 0.986 0.371 0.783
Not stated 0.136 0.951 0.871 0.639 0.762

6th grade 0.218 0.896 0.918 0.421 0.695
7th grade 0.212 0.910 0.924 0.434 0.709
8th grade 0.207 0.921 0.921 0.444 0.716
9th grade 0.232 0.937 0.978 0.423 0.779
10th grade 0.169 0.937 0.888 0.529 0.727
11th grade 0.112 0.940 0.730 0.654 0.692
12th grade 0.079 0.953 0.573* 0.728* 0.649
NSLP: Free 0.252 0.919 0.961 0.385 0.737
NSLP: Reduced 0.130 0.920 0.745 0.579 0.652
NSLP: Paid 0.097 0.942 0.683* 0.700* 0.690
NSLP: N/A 0.125 0.942 0.788 0.634 0.711

Table 2: Overall model risk score quality for subpop-
ulations. ‘+ rate’ refers to the baseline ‘condition-
positive’ negative enrollment outcome rate for
that subpopulation’s current or future enrollments.
NSLP refers to the National School Lunch Program.
AIAN refers to American Indian and Alaska Na-
tive. NHPI refers to Native Hawaiian and Pacific
Islander. * means that the ‘+ rate’ value is less
than 0.1 and therefore the effective maximum range
of P@10 and R@10 is less than 1.0 for that subpop-
ulation.

positive (“needs early warning”) rate. The effective range of
PR@16 and PR@b is 0.0 (completely incorrect) to 1.0 (com-
pletely correct), with the random prediction rate equivalent
to the baseline rate for that population.

3. LIMITATIONS AND EXTENSIONS
The use of year-level aggregates in model training erases
temporal relationships between individual event records, mak-
ing the system relatively blind to patterns of individual events
within an academic year. To address this limitation, we are
exploring alternate modeling strategies capable of ingesting
event-based data streams that are both more granular and of
non-uniform length. A second limitation is our model’s focus
on grades 6–12. Interventions are most successful when they
are applied early [21]. The ability to provide meaningful risk
indicators for younger students could significantly improve
outcomes by helping counselors target interventions toward
the students who need them most, at the point they can ben-
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efit from them most. To do this, we must overcome several
data-consistency related obstacles, the most pressing being
a lack of long-term datasets that are consistent in the type
of information collected over time and the quality/reliability
of the collection.

Finally, although target labels were created using inter-rater
reliability methods, research on state policies, and student
outcome data, the labels have not been verified by repre-
sentatives from each school district who could personally
attest to the accuracy of a given student’s outcome. We in-
tend to make the target calculation available to schools and
to implement a system for users to provide feedback on our
product’s predictive accuracy to allow us to verify our labels
and to continue to improve the quality of predictions.

4. CONCLUSION
We built a decision support system that provides high-quality,
context-sensitive risk predictions and is integrated into an
SIS that thousands of counselors already use in their work-
flows. In doing so, we offer daily risk assessments to mil-
lions of currently enrolled middle and high school students
across the country. By automatically identifying students
who may benefit from additional institutional resources in
the service of timely graduation, we fulfill a key component
of the dropout prevention process.
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